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Asymptotic scaling of the diffusion coefficient of fluctuating “pulled” fronts
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We present dheuristio theoretical derivation for the scaling of the diffusion coefficientfor fluctuating
“pulled” fronts. In agreement with earlier numerical simulations, we find thaNas<, D; approaches zero
as 1/ N, whereN is the average number of particles per correlation volume in the stable phase of the front.
This behavior ofD; stems from the shape fluctuations at the very tip of the front, and is independent of the
microscopic model.
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Interest in the effect of fluctuations on propagating fronts=0,1,2 ... . Thenumber of particles with a certain reading
has revived in recent years with the understanding that frontg at timet is ny(t). With ¢, (t)==,, _ N (t)/N, in a com-
which in the deterministic mean-field limit are of the so- puter simulation, the speed and the diffusion coefficient of
called pulled type are surprisingly sensitive to fluctuation the front in both models are measured by tracking the posi-
and discrete-particle effects. Pulled fronts are those thQion of the center of mass of the partic]e distributigrence-
propagate into a linearly unstable state, and whose asympgorth referred to as the center of mass of the front ijself
totic front speed ,sis simply the linear spreading speett individual realizations. For the particle distributign(t)},

of infinitesimal perturbations around the Iinearly unstableof realizationr at timet, in both mode]sl the center of mass
state[1-3]. The propagation mechanism of such fronts isgf the front is located at

that they are being “pulled along” by the growth and spread-

ing of small perturbations around the linearly unstable state. .

It was first established by Brunet and Derrig and later S(H=N Ek k”k(t)zzk (). @
confirmed in a variety of stochastic front equatidds-8§]

that when pulled fronts are realized by stochastic moves of;om there onwards, one defin@5f=limT_md<[Sr(t+T)

discrete particles on a lattice, such that the average numbe_rsr(t)_UNT] 2/dT andvy=(5,(t)). The angular brackets

of partlcles per lattice S|t¢ or correlation vol*ume in the satu-denote first an average over all possible updating random
ration phase of the front i, v ,sapproaches™* from below

extremelv slowly: the convergence it scales only as number sequences for a given front realizatédter time t
5 y y- e 9 y >1, and then a further average over the ensembl@itial)
1/In“N whenN— o, with a known prefactor that depends on f o ;
. . ont realizationsat time t.
the model under consideration. The reason why a true pulledr

front is so sensitive to finite particle cutoff effects is the very To the best of our knowledge, at present, there exists no
fact that there is essentially no growth below the cutoff Ievelanalyﬂcal derivation of the 1/ asymptotic scaling oD

of one “quantum” of particle. As a result. these discrete-for fluctuating pulled fronts. Our aim here is to provide a
: q rorp ) ' derivation for the stochastic Fisher-Kolmogorov-Petrovsky-

particle front realizations are actually weakly push@e11]. Piscunov(SFKPR equation

To remind ourselves that they converge to pulled fronts in q

he limit N—o, h ill ref h fl i
‘t‘pilllerg'l’tfrontz, ere we will refer to them as fluctuating b=+ d— d+ h— 2 n(x.HIN, )

The second Important feature O.f fluctuating “pu!led" where the stochastic term#(x,t) is interpreted in the Tto
fronts, pamely the dlﬁt_Jgswe wandering of the fro_n_t |t§elf sense with the two following conditions:
around its average position as a result of stochasticity in the
microscopic dynamics, still remains very poorly understood. — T = S(x—x! Y
Of particular interest is the question how the front diffusion (n06t)y=0, (nlxm(x' 1)), = Sx=x) St -t )'(3)
coefficientD; vanishes adl—oo. This scaling is particularly
difficult to study numerically. Nevertheless, using a cleverWe then argue that the same scalindefholds for the clock
algorithm to takeN as large as 78° Brunet and Derrid&8] model [5] and for the microscopic model that Brunet and
presented convincing numerical evidence that for the modeDerrida considered for their simulati¢8]—in other words,
they studiedD; scales as- 1/In®N. Moreover, a “simplified  the asymptotic scaling ob; is independent of the micro-
model,” where the fluctuations am@ndomlygeneratednly  scopic model and is a generic property of fluctuating pulled
on the instantaneous foremost occupied lattice site, wafonts. The full flavor of this subtlety-riddled derivation ap-
found to exhibit thesamel/In® N asymptotic scaling ob; as  pears elsewherecs. 2.5 and 4.2, Rdfl2]). Here we focus
the full stochastic modgi]. only on the main points and the main results.

The microscopic dynamics of Brunet and Derrida’s From this perspective, it is therefore important to first
(discrete-tim¢ model [8] closely resembles that of the summarize the Langevin-type field-theoretical approaches
(continuous-time “clock model” [5]. In both models, one for general reaction-diffusion systefi?2—15. Starting with
considers a set oN particles with integral “readings’k  the Ito stochastic differential equation
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dp= ,;§¢+ f(p) +EYR(X,1), (4) mode(which is identified with the diffusion coefficient of the
front itself in this casgis then easily defined via the Green-

with €<1 and R(x,t)=g(¢) n(x,t), in these approaches, Kubo relation[12-15 as

one writes the corresponding front solution agXx,t) o ) ) 5

= dO[x—vd— X(1) ]+ 5[ x—vad— X(1)] to separate the ~ f_mdge YD p(E(7 (4D
systematic and the fluctuating part of the front. The system- DG:i ) (8)
atic part ¢(9(¢) satisfies the deterministic equation 2 2

|” deewsa e

0,908 =92 (&) + [ $O(£)]. As for the fluctuat-
ing part, the idea behind writing(x,t) in the above form is
to separate the fluctuations in the front at two different timeThe angular brackets with a subscriptienote an average
scales. Of these, the long time scale fluctuations are coded RVe€r an ensemble dfnitial) front realizations at time.
the random wanderingX(t) of the Goldstone mode Qr) the qther hand, if the front pos'ltlon |s'def|ned by the
®G,R(§)Ed¢(0)(§)/d§ of the front around its uniformly position of its cegter of masd), then in continuum space,
translating positiorx—v,4. On the other hand, the short W€ have S(t)=f,.xdx((j>o()x,t), and for react|o(r(1);d|ffu5|on
time scale fluctuations manifest themselves through the fludTonts (4) that satisfy ¢ =(§) —1 for {&——, ¢(£)—0
tuations in the front shape around its instantaneous positioff" =% @nd 8¢(§)—0 for &— = [12],
X—vd— X(t). " )

In this form, the Goldstone mode is in fact the right ei—g(t):f dgdf’(d’)
genvector of the linear stability operatdt, = a§+va§9§ —oo d¢

+ 64 f(¢)] 4- 40 With zero eigenvalug9]; and its instanta-
neous position is defined by requiring that it be orthogonal tc by(0) ba(t) ©)
the front shape fluctuations, i.ef”.dé®g (£€)64[é  Thereaftefhaving used Eq3), (4), and(6) and the solu-
—X(),t]=0 at all times [12-15. Here, ®g ()  tion of Eq. (7)], in the expansion of the produ&(t)S(t
=e’=*dg g(£) is the left eigenvector of, corresponding  +t') of Eq. (10), by(t)b,(t+1') is seen not to contribute to
to eigenvalue zerpl6]. When this orthogonality condition is 1 .t

used in linearized Eq(4), one finds that the instantaneous D;==lim f dt’ ((S()S(t+17)), )y, (10)
speed of the Goldstone mode fluctuataslong time scalés 2t K

aroundv ;s by [12-15

5d)(§,t)+§1/2fw dER(E0).
¢O® o

while DIV, D{?, andD{®, the respective contributions of
bo(t)b,(t+1"), by(t)by(t+t"), and by(t)by(t+t") to Dy

| deac oren (=33,D{)). are given by{12]
X(t)= 82— : (5) oo B
f_ dE Dg, ()P (£) D{=Df )=§f_md§<g [b(£.0 D, (11)
and
Simultaneously, at short time scales, the shape fluctua-
tions of the front aroun@(® at the instantaneous position of 3) Tl Cm(t) € (1)),
the Goldstone mode are analyzed by defining ringually Dy7’= E )
orthonormalshape fluctuation moddal,,(£)} in the eigen- om0
space of nonzero eigenvalues of the linear stability operator ©  Sf(P)
L, as[12,14 J dfv v, g(£)
* o #O (&)
SH(£0= 2, (D)W ma(é). (6) P
)
. . < [TaeZP e a2
Thec,(t)’s are then easily seen to satigfi2,14] —oo o¢ HO(Ey

In general, in this formalismg(¢) cannot be replaced
by g[ #'9]—after all, the value of¢ at any given time
depends on its precise evolution histdne., noise realiza-

where W, (¢) andW, (¢) are, respectively, the right and fuon chosen to evolve the fronat earlier times. However,

. o ) in case the nonlinearities ifi(¢) make ¢(®) pushed, i.e.,
the left eigenvectors 0£Uas with eigenvaluery, #0. for fluctuating pushed fronts with internal noise, the decay

If the front position is defined by the position of its Gold- times of the shape fluctuation modes are of the same order
stone mode, then the phenomenon of front diffusion arisegg the time scale set byulL. In that case, the dependence
due to the random speed fluctuation@) of the Goldstone of g(¢) at any time on the precise evolution history of the-
mode around ,s. The diffusion coefficient of the Goldstone front at earlier times can be neglected to replayes)

ém<t)=—Tr;lcmm+51’2j:d§wm,L<f)R<é,t), @
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by g[ #(?’]. This replacement makes the stochagtioise cels the 1N prefactor. The denominator, on the other hand,
term in Eq. (4) additive in nature. Moreover, it converts asymptotically simply scales as®IN.
Eqg. (7) to that of a Brownian particle in a fluid with vis- As for D¢ of the fluctuating pulled front in the SFKPP
cosity ', where the fluctuating force is given by equation, D{¥) and D{? are straightaway seen to be
BY2[7 deWw,, (8)g[¢O(&)]n, implying that one can of O(1/N) from Eq. (11), while the evaluation ofD{*)
then use fluctuation-dissipation theorem to evalu-is no easy matter. Unlike pushed fronts, one cannot simply
ate(Cm(t) Co (D)) =37 dEV 1 (E) Vi L(E) P[4 O()]/  replaceg(¢) by gl ¢(¥] and arrive at Eq(13—for fluctu-
(Tr;lJrTr;/l) to further obtain12] ating pulled fronts, fluctuation modes decay very slowly
[6,9] and as a result, the front configuration at any time de-
1 pends strongly on the precise noise realization that has been
D®=-D), used to evolve it at earlier times. This means that there is no
2 other way forward than to evaluab$®) in Eq.(12), and this
is done in two steps.

e, At the first step, we argue that in Eq12) dv,
=5,/In¥2N with s,,~0O(1) [12] and obtain
58 [
Di=— dé g’ ¢ ()] 1 S \Spyr
4d D=2 T (e (D). (14)
o m,m’ #0 In°N
20 & 2 2r 4(0)
[ %dge P R(OGTHTO] This scaling ofév ,, is obtained with the idea that for Brunet
#Deza 5 . (13) and Derrida’s cutoff solution ¢'®, the front speed

2, def[pO(£)]=2 is of O(1). Naturally, when the front
shapeg(¢,t) deviates fromp(V(¢) by an amountV , r(£),
which is always a factor I?2N weaker thanp(9(¢) itself
We will see later that for fluctuating pulled front in the [notice the prefactors of#(®)(¢) and ¥ nr(€) abovd, the
SFKPP equation tod); andD g are not the same. Before we contribution of themth shape fluctuation mode to the fluc-
delve deeper into the SFKPP equation, here we take a shduation in the front speedv,, has to be ofO(In"¥2N) as
digression to mention that similar situation occurs for gaswell [12]. Furthermore, since there a@(In N) number of
mixtures (see, for example, Chap. 11.2 of Rdfl7]).  shape fluctuation modd®,12, the sum overm andm’ in
Therein, the expressiofand the valugof the diffusion co- Eq. (14) runs from 1 to InN\.
efficient depends on its precise definition, but these different At the secondand perhaps the trickiesstep, we deter-
expressions of the diffusion coefficient afguite nontrivi-  mine the dependence ¢f,,(t) ¢/ (t)); on InN, and evaluate
ally) related by means of Onsager relations for the diffusionthe sums in Eq(14). To this end, notice that for a given
coefficients. As for fronts too, it should not be surprising thatrealization, c,(t) is expressed[via Eq. (6)] as cpy(t)
the precise values dd; andDg are not the same. Indeed, =[7,.dé W, 84(&1) [12]. However, the presence of ¢
what is important to note is thatonceptually they are two V(€ implies thatc(t) for a given realization is prac-
entirely different quantitiesVhether they could be related by ey determined from the fluctuation characteristics at the

any clever means or not is left here for future investigation.tip of the front, and therefore, we retain the integral only
For the fluctuating pulled front in the SFKPP equation, weq,er the leading edge of the front:

make the ansatz that the front solution can be decomposed to

| deewsa e

a ¢ that is nothing but Brunet and Derrida’s cutoff solu- 1 (4 .
tion, and its corresponding shape fluctuation mofiés,}; cm(t) = Tf déer fsiMam(é—&1)]84(&,1).
i.e., at the(linearized leading edge of the frontg(®)(¢) IN**NJ &

—INNSiNE—£)]e ™ m  [4] and W (&)=Siign(é 19

—&)le M ¥InY2N [6,9]. Here \*=1, q;=(j+1)a/InNV] By virtue of (5¢(&,t));=0, Eq. (15) then yields(cp(t));
=0, £,=0 is the location of the left end of the leading edge =0 as it should, but in the absence of any statistics of the
where the nonlinea? term in the SFKPP equation is non- shape fluctuations of the front at tilaeone cannot obtain an
negligible, and the cutoff is implemented &=InN [4,9]. expression of(cy(t) ¢y (t)); from it. Moreover, since we
This ansatz is consistent with the compact support propertgannot replace(¢) by g[ ¢(*] for fluctuating pulled fronts,
of the front solution in the SFKPP equatiph8], and it also  one cannot use fluctuation-dissipation theorem in &q.
satisfies the requirements for E§) [i.e., we can safely use to evaluate (c(t) c(t)); either—there is no generic
Egs.(11) and(12) with this ansatk fluctuation-dissipation theorem available for multiplicative
Then, the 1/IAN asymptotic scaling oD for the fluctu-  noise[19]. Nevertheless, we can still proceed with two ap-
ating pulled front in the SFKPP equation is obtained veryproximations. The first one stems from the fact that although
easily[12]. One simply has to notice that due to the expo-it is clear from Eq.(15) thatc,(t) andc,,(t) (m#m’) are
nential weight factor in the integrand of the numerator of Eq.correlated in generdhfter all, for a given realization, all the
(8), the numerator is practically determined within a distancec,,(t)’s are determined through treames¢(t)], these fluc-
of O(1/\*) of &, where the integrand scalesN and can- tuation modes will have a finite correlation “length,” i.e.,
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(Cm(t) ce(t)); will be negligibly small [compared to considered for their simulatiofB], construction of the left
‘/<Cﬁ1(t)>t<cm2/(t)>t] when|m—m'| exceeds a certain thresh- eigenvector for the corresponding, and repeating the
old a<In N. Based on this anticipation, our approximation is same exercisés in herg are nontrivial. Nevertheless, since
to choosea=0 for the extreméand unrealisticcase to sim-  all the arguments for the derivation of the M asymptotic
plify the expression foD{® to (see later for the discussion scaling ofD; in the SFKPP equation are concentrated on the
on nonzero values of) leading edgdor more precisely, at the very tip of the front
where the(fluctuating pulled front properties are model in-

InN
D(3)=£ HE Sh (c2(1) (16) dependent, one expects to observe the same scaling for
b2 Tm|n3N my L for these two models too. In view of this, the T/

asymptotic scaling oD; seems to be a generic property of
Then the second approximation is that due to the presence €fictuating pulled fronts, independent of the microscopic
the e ¢ in the integrand of Eq(15), only the value ofS§¢ ~ model.
within a distance~1/\* =1 of the tip determines(t). This (iii) In the clock model, one can only create non-local
is seen in the following manner: typically the magnitude offluctuations in the front shape. The “collisions” between
Sé(&,1) is of the order ofyp(&,t)/N; at the tip,e* éo~N clocks are also nonlocal in naturg,12]. In reality, however,
cancelsd¢(£,t)~ 1N in Eq. (15), but further behind, the these complications matter neither for the front speed nor for
1/\/N factor of ¢(§,t)/N can no |onger be Compensated by D;—Brunet and Derrida ShOWd:(%], ina simplified version
e € \We therefore use of their original microscopic modéivhich closely resembles
the clock model that the localized fluctuations i¢ at the
Isinqm(é— &) ] am m(m+1) very tip of the front are all that is needed for the $fn
~ ~ asymptotic scaling oDy .
fomt "N InN In*2N (iv) Dg and[through the scaling of the(t)'s] D¢ are
17 both determined only from the tip of the front. This is in
In Eq. (17), sing,(é—&)] has been Taylor expanded Perfect agreement with Brunet and Derrida’'s simplified
around its value zero at,~InN. Thereafter, withr,,  Model[8].

3
enttl~ [ e

=2 N[ 74 (m+1)>—1}] [6,9], we obtain (v) Finally, the scalings oD; andDg have been obtained
by means of an ansafsecond paragraph below E@.3)].
1 NN (m+1)2s2, 1 The integrity of the method used here to obtain these scal-
D=D{®~ = . (18  ings can be tested by numerically obtaining the scaling of

2@70 [(m+1)*=1]In*N  In*N Dg and the scaling properties dic,(t)cy (t)); for the

FKPP equation. It must also be noted that these numerical
simulations involve extremely high values Mf and are no-
toriously difficult to perform.

We end this paper with five final observations:

(i) Realistically,a# 0, but so long a®<InN, which is
what one expects in reality, Eq&ll), (14), (15), and (17)
show that the 1/iN asymptotic scaling oD continues to | thank Henk van Beijeren, Jaume Casademunt, Wouter
hold. Kager, Esteban Moro, Bernard Nienhuis, Wim van Saarloos,

(i) We have extensively used the left eigenvector of theand Ramses van Zon for useful discussions. Financial sup-
stability operator’, for reaction-diffusion systems. For the port was provided by the Dutch research organization FOM
clock model[5], or for the model that Brunet and Derrida (Fundamenteel Onderzoek der Matgrie
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