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Asymptotic scaling of the diffusion coefficient of fluctuating ‘‘pulled’’ fronts
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We present a~heuristic! theoretical derivation for the scaling of the diffusion coefficientD f for fluctuating
‘‘pulled’’ fronts. In agreement with earlier numerical simulations, we find that asN→`, D f approaches zero
as 1/ln3 N, whereN is the average number of particles per correlation volume in the stable phase of the front.
This behavior ofD f stems from the shape fluctuations at the very tip of the front, and is independent of the
microscopic model.
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Interest in the effect of fluctuations on propagating fro
has revived in recent years with the understanding that fro
which in the deterministic mean-field limit are of the s
called pulled type are surprisingly sensitive to fluctuatio
and discrete-particle effects. Pulled fronts are those
propagate into a linearly unstable state, and whose asy
totic front speedvas is simply the linear spreading speedv*
of infinitesimal perturbations around the linearly unsta
state @1–3#. The propagation mechanism of such fronts
that they are being ‘‘pulled along’’ by the growth and sprea
ing of small perturbations around the linearly unstable st
It was first established by Brunet and Derrida@4# and later
confirmed in a variety of stochastic front equations@4–8#
that when pulled fronts are realized by stochastic moves
discrete particles on a lattice, such that the average num
of particles per lattice site or correlation volume in the sa
ration phase of the front isN, vas approachesv* from below
extremely slowly: the convergence tov* scales only as
1/ln2 N whenN→`, with a known prefactor that depends o
the model under consideration. The reason why a true pu
front is so sensitive to finite particle cutoff effects is the ve
fact that there is essentially no growth below the cutoff le
of one ‘‘quantum’’ of particle. As a result, these discret
particle front realizations are actually weakly pushed@9–11#.
To remind ourselves that they converge to pulled fronts
the limit N→`, here we will refer to them as fluctuatin
‘‘pulled’’ fronts.

The second important feature of fluctuating ‘‘pulled
fronts, namely the diffusive wandering of the front itse
around its average position as a result of stochasticity in
microscopic dynamics, still remains very poorly understo
Of particular interest is the question how the front diffusi
coefficientD f vanishes asN→`. This scaling is particularly
difficult to study numerically. Nevertheless, using a clev
algorithm to takeN as large as 10150, Brunet and Derrida@8#
presented convincing numerical evidence that for the mo
they studied,D f scales as;1/ln3 N. Moreover, a ‘‘simplified
model,’’ where the fluctuations arerandomlygeneratedonly
on the instantaneous foremost occupied lattice site,
found to exhibit thesame1/ln3 N asymptotic scaling ofD f as
the full stochastic model@8#.

The microscopic dynamics of Brunet and Derrida
~discrete-time! model @8# closely resembles that of th
~continuous-time! ‘‘clock model’’ @5#. In both models, one
considers a set ofN particles with integral ‘‘readings’’k
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50,1,2, . . . . Thenumber of particles with a certain readin
k at time t is nk(t). With fk(t)5(k85k

` nk8(t)/N, in a com-
puter simulation, the speed and the diffusion coefficient
the front in both models are measured by tracking the p
tion of the center of mass of the particle distribution~hence-
forth referred to as the center of mass of the front itself! in
individual realizations. For the particle distribution$nk(t)% r
of realizationr at time t, in both models, the center of mas
of the front is located at

Sr~ t !5N21(
k

knk~ t !5(
k

fk~ t !. ~1!

From there onwards, one definesD f5 lim
T→`

d^@Sr(t1T)
2Sr(t)2vNT] 2&/dT andvN5^Ṡr(t)&. The angular brackets
denote first an average over all possible updating rand
number sequences for a given front realizationafter time t
@1, and then a further average over the ensemble of~initial!
front realizationsat time t.

To the best of our knowledge, at present, there exists
analytical derivation of the 1/ln3 N asymptotic scaling ofD f
for fluctuating pulled fronts. Our aim here is to provide
derivation for the stochastic Fisher-Kolmogorov-Petrovsk
Piscunov~SFKPP! equation

] tf5]x
2f1f2f21Af2f2h~x,t !/AN, ~2!

where the stochastic term}h(x,t) is interpreted in the Itoˆ
sense with the two following conditions:

^h~x,t !&h50, ^h~x,t !h~x8,t8!&h5d~x2x8!d~ t2t8!.
~3!

We then argue that the same scaling ofD f holds for the clock
model @5# and for the microscopic model that Brunet an
Derrida considered for their simulation@8#—in other words,
the asymptotic scaling ofD f is independent of the micro
scopic model and is a generic property of fluctuating pul
fronts. The full flavor of this subtlety-riddled derivation ap
pears elsewhere~Secs. 2.5 and 4.2, Ref.@12#!. Here we focus
only on the main points and the main results.

From this perspective, it is therefore important to fir
summarize the Langevin-type field-theoretical approac
for general reaction-diffusion systems@12–15#. Starting with
the Itô stochastic differential equation
©2003 The American Physical Society02-1
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] tf5]x
2f1 f ~f!1 «̃1/2R~x,t !, ~4!

with «̃!1 and R(x,t)5g(f)h(x,t), in these approaches
one writes the corresponding front solution asf(x,t)
5f (0)@x2vast2X(t)#1df@x2vast2X(t)# to separate the
systematic and the fluctuating part of the front. The syste
atic part f (0)(j) satisfies the deterministic equatio
2vas]jf

(0)(j)5]j
2f (0)(j)1 f @f (0)(j)#. As for the fluctuat-

ing part, the idea behind writingf(x,t) in the above form is
to separate the fluctuations in the front at two different ti
scales. Of these, the long time scale fluctuations are code
the random wanderingX(t) of the Goldstone mode
FG,R(j)[df (0)(j)/dj of the front around its uniformly
translating positionx2vast. On the other hand, the sho
time scale fluctuations manifest themselves through the fl
tuations in the front shape around its instantaneous pos
x2vast2X(t).

In this form, the Goldstone mode is in fact the right e
genvector of the linear stability operatorLvas

5]j
21vas]j

1df f (f)uf5f(0) with zero eigenvalue@9#; and its instanta-
neous position is defined by requiring that it be orthogona
the front shape fluctuations, i.e.,*2`

` dj FG,L(j)df@j
2X(t),t#50 at all times @12–15#. Here, FG,L(j)
[evasjFG,R(j) is the left eigenvector ofLvas

corresponding
to eigenvalue zero@16#. When this orthogonality condition is
used in linearized Eq.~4!, one finds that the instantaneou
speed of the Goldstone mode fluctuates~at long time scales!
aroundvas by @12–15#

Ẋ~ t !52 «̃1/2

E
2`

`

dj FG,L~j!R~j,t !

E
2`

`

dj FG,L~j!FG,R~j!

. ~5!

Simultaneously, at short time scales, the shape fluc
tions of the front aroundf (0) at the instantaneous position o
the Goldstone mode are analyzed by defining themutually
orthonormalshape fluctuation modes$Cm(j)% in the eigen-
space of nonzero eigenvalues of the linear stability oper
Lvas

as @12,14#

df~j,t !5 (
mÞ0

cm~ t !Cm,R~j!. ~6!

The cm(t)’s are then easily seen to satisfy@12,14#

ċm~ t !52tm
21cm~ t !1 «̃1/2E

2`

`

dj Cm,L~j!R~j,t !, ~7!

whereCm,R(j) andCm,L(j) are, respectively, the right an
the left eigenvectors ofLvas

with eigenvaluetm
21Þ0.

If the front position is defined by the position of its Gold
stone mode, then the phenomenon of front diffusion ari
due to the random speed fluctuationsẊ(t) of the Goldstone
mode aroundvas. The diffusion coefficient of the Goldston
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mode~which is identified with the diffusion coefficient of th
front itself in this case! is then easily defined via the Green
Kubo relation@12–15# as

DG5
«̃

2

E
2`

`

dj e2vasjFG,R
2 ~j!^g2@f~j,t !#& t

F E
2`

`

dj evasjFG,R
2 ~j!G2 . ~8!

The angular brackets with a subscriptt denote an average
over an ensemble of~initial! front realizations at timet.

On the other hand, if the front position is defined by t
position of its center of mass~1!, then in continuum space
we have S(t)5*2`

` dx f(x,t), and for reaction-diffusion
fronts ~4! that satisfyf (0)(j)→1 for j→2`, f (0)(j)→0
for j→`, anddf~j!→0 for j→6` @12#,

~9!

Thereafter@having used Eqs.~3!, ~4!, and ~6! and the solu-
tion of Eq. ~7!#, in the expansion of the productṠ(t)Ṡ(t
1t8) of Eq. ~10!, b1(t)b2(t1t8) is seen not to contribute to

D f5
1

2
lim

T→`
E

t

t1T

dt8^^Ṡ~ t !Ṡ~ t1t8!&h& t , ~10!

while D f
(1) , D f

(2) , andD f
(3) , the respective contributions o

b2(t)b2(t1t8), b2(t)b1(t1t8), and b1(t)b1(t1t8) to D f
(5( i 51

3 D f
( i )), are given by@12#

D f
(1)5D f

(2)5
«̃

2E2`

`

dj^g2@f~j,t !#& t , ~11!

and

~12!

In general, in this formalism,g(f) cannot be replaced
by g@f (0)#—after all, the value off at any given time
depends on its precise evolution history~i.e., noise realiza-
tion chosen to evolve the front! at earlier times. However
in case the nonlinearities inf (f) make f (0) pushed, i.e.,
for fluctuating pushed fronts with internal noise, the dec
times of the shape fluctuation modes are of the same o
as the time scale set by 1/vas. In that case, the dependenc
of g(f) at any time on the precise evolution history of th
front at earlier times can be neglected to replaceg(f)
2-2
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by g@f (0)#. This replacement makes the stochastic~noise!
term in Eq. ~4! additive in nature. Moreover, it convert
Eq. ~7! to that of a Brownian particle in a fluid with vis
cosity tm

21 , where the fluctuating force is given b
«̃1/2*2`

` dj Cm,L(j)g@f (0)(j)#h, implying that one can
then use fluctuation-dissipation theorem to eva
ate^cm(t) cm8(t)& t5 «̃*2`

` djCm,L(j)Cm8,L(j)g2@f (0)(j)#/
(tm

211tm8
21) to further obtain@12#

D f
(3)5

1

2
D f

(1) ,

i.e.,

D f5
5«̃

4
E

2`

`

dj g2@f (0)~j!#

ÞDG5
«̃

2

E
2`

`

dj e2vasjFG,R
2 ~j!g2@f (0)~j!#

F E
2`

`

dj evasjFG,R
2 ~j!G2 . ~13!

We will see later that for fluctuating pulled front in th
SFKPP equation too,D f andDG are not the same. Before w
delve deeper into the SFKPP equation, here we take a s
digression to mention that similar situation occurs for g
mixtures ~see, for example, Chap. 11.2 of Ref.@17#!.
Therein, the expression~and the value! of the diffusion co-
efficient depends on its precise definition, but these differ
expressions of the diffusion coefficient are~quite nontrivi-
ally! related by means of Onsager relations for the diffus
coefficients. As for fronts too, it should not be surprising th
the precise values ofD f and DG are not the same. Indeed
what is important to note is thatconceptually they are two
entirely different quantities. Whether they could be related b
any clever means or not is left here for future investigati

For the fluctuating pulled front in the SFKPP equation,
make the ansatz that the front solution can be decompose
a f (0) that is nothing but Brunet and Derrida’s cutoff sol
tion, and its corresponding shape fluctuation modes$Cm%;
i.e., at the~linearized! leading edge of the front,f (0)(j)
5 ln Nsin@q0(j2j1)#e

2l* j/p @4# and Cm(j).sin@qm(j
2j1)#e

2l* j/ln1/2N @6,9#. Here l*51, qj5( j 11)p/ ln N; j
>0, j1.0 is the location of the left end of the leading ed
where the nonlinearf2 term in the SFKPP equation is non
negligible, and the cutoff is implemented atj0. ln N @4,9#.
This ansatz is consistent with the compact support prop
of the front solution in the SFKPP equation@18#, and it also
satisfies the requirements for Eq.~9! @i.e., we can safely use
Eqs.~11! and ~12! with this ansatz#.

Then, the 1/ln6 N asymptotic scaling ofDG for the fluctu-
ating pulled front in the SFKPP equation is obtained ve
easily @12#. One simply has to notice that due to the exp
nential weight factor in the integrand of the numerator of E
~8!, the numerator is practically determined within a distan
of O(1/l* ) of j0, where the integrand scales;N and can-
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asymptotically simply scales as ln6 N.

As for D f of the fluctuating pulled front in the SFKPP
equation, D f

(1) and D f
(2) are straightaway seen to b

of O(1/N) from Eq. ~11!, while the evaluation ofD f
(3)

is no easy matter. Unlike pushed fronts, one cannot sim
replaceg(f) by g@f (0)# and arrive at Eq.~13!—for fluctu-
ating pulled fronts, fluctuation modes decay very slow
@6,9# and as a result, the front configuration at any time d
pends strongly on the precise noise realization that has b
used to evolve it at earlier times. This means that there is
other way forward than to evaluateD f

(3) in Eq. ~12!, and this
is done in two steps.

At the first step, we argue that in Eq.~12! dvm
5sm / ln3/2N with sm;O(1) @12# and obtain

D f
(3)5

1

2 (
m,m8Þ0

tm

smsm8

ln3 N
^cm~ t !cm8~ t !& t . ~14!

This scaling ofdvm is obtained with the idea that for Brune
and Derrida’s cutoff solution f (0), the front speed
*2`

` dj f @f (0)(j)#.2 is of O(1). Naturally, when the front
shapef(j,t) deviates fromf (0)(j) by an amountCm,R(j),
which is always a factor ln23/2N weaker thanf (0)(j) itself
@notice the prefactors off (0)(j) and Cm,R(j) above#, the
contribution of themth shape fluctuation mode to the fluc
tuation in the front speeddvm has to be ofO(ln23/2N) as
well @12#. Furthermore, since there areO(ln N) number of
shape fluctuation modes@9,12#, the sum overm and m8 in
Eq. ~14! runs from 1 to lnN.

At the second~and perhaps the trickiest! step, we deter-
mine the dependence of^cm(t) cm8(t)& t on lnN, and evaluate
the sums in Eq.~14!. To this end, notice that for a give
realization, cm(t) is expressed@via Eq. ~6!# as cm(t)
5*2`

` dj Cm,L df(j,t) @12#. However, the presence ofel* j

in Cm,L(j) implies thatcm(t) for a given realization is prac
tically determined from the fluctuation characteristics at
tip of the front, and therefore, we retain the integral on
over the leading edge of the front:

cm~ t !5
1

ln1/2N
E

j1

j0
dj el* j sin@qm~j2j1!#df~j,t !.

~15!

By virtue of ^df(j,t)& t50, Eq. ~15! then yields^cm(t)& t
50 as it should, but in the absence of any statistics of
shape fluctuations of the front at timet, one cannot obtain an
expression of̂ cm(t) cm8(t)& t from it. Moreover, since we
cannot replaceg(f) by g@f (0)# for fluctuating pulled fronts,
one cannot use fluctuation-dissipation theorem in Eq.~7!
to evaluate ^cm(t) cm8(t)& t either—there is no generic
fluctuation-dissipation theorem available for multiplicativ
noise@19#. Nevertheless, we can still proceed with two a
proximations. The first one stems from the fact that althou
it is clear from Eq.~15! that cm(t) andcm8(t) (mÞm8) are
correlated in general@after all, for a given realization, all the
cm(t)’s are determined through thesamedf(t)], these fluc-
tuation modes will have a finite correlation ‘‘length,’’ i.e
2-3
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^cm(t) cm8(t)& t will be negligibly small @compared to
A^cm

2 (t)& t^cm8
2 (t)& t] when um2m8u exceeds a certain thresh

old a! ln N. Based on this anticipation, our approximation
to choosea50 for the extreme~and unrealistic! case to sim-
plify the expression forD f

(3) to ~see later for the discussio
on nonzero values ofa)

D f
(3)5

1

2 (
mÞ0

ln N

tm

sm
2

ln3 N
^cm

2 ~ t !& t . ~16!

Then the second approximation is that due to the presenc
the el* j in the integrand of Eq.~15!, only the value ofdf
within a distance;1/l*51 of the tip determinescm(t). This
is seen in the following manner: typically the magnitude
df(j,t) is of the order ofAf(j,t)/N; at the tip,el* j0;N
cancelsdf(j,t);1/N in Eq. ~15!, but further behind, the
1/AN factor ofAf(j,t)/N can no longer be compensated
el* j. We therefore use

ucm~ t !u;E
j021

j0
dj

usin@qm~j2j1!#u

ln1/2N
;

qm

Aln N
;

p~m11!

ln3/2N
.

~17!

In Eq. ~17!, sin@qm(j2j1)# has been Taylor expande
around its value zero atj0. ln N. Thereafter, with tm
5 ln2 N/@p2$(m11)221%# @6,9#, we obtain

D f.D f
(3);

1

2 (
mÞ0

ln N
~m11!2 sm

2

@~m11!221# ln4 N
;

1

ln3 N
. ~18!

We end this paper with five final observations:
~i! Realistically,aÞ0, but so long asa! ln N, which is

what one expects in reality, Eqs.~11!, ~14!, ~15!, and ~17!
show that the 1/ln3 N asymptotic scaling ofD f continues to
hold.

~ii ! We have extensively used the left eigenvector of
stability operatorLvas

for reaction-diffusion systems. For th
clock model@5#, or for the model that Brunet and Derrid
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considered for their simulation@8#, construction of the left
eigenvector for the correspondingLvas

and repeating the

same exercise~as in here! are nontrivial. Nevertheless, sinc
all the arguments for the derivation of the 1/ln3 N asymptotic
scaling ofD f in the SFKPP equation are concentrated on
leading edge~or more precisely, at the very tip of the fron!
where the~fluctuating pulled! front properties are model in
dependent, one expects to observe the same scaling foD f

for these two models too. In view of this, the 1/ln3 N
asymptotic scaling ofD f seems to be a generic property
fluctuating pulled fronts, independent of the microscop
model.

~iii ! In the clock model, one can only create non-loc
fluctuations in the front shapef. The ‘‘collisions’’ between
clocks are also nonlocal in nature@5,12#. In reality, however,
these complications matter neither for the front speed nor
D f—Brunet and Derrida showed@8#, in a simplified version
of their original microscopic model~which closely resembles
the clock model!, that the localized fluctuations inf at the
very tip of the front are all that is needed for the 1/ln3 N
asymptotic scaling ofD f .

~iv! DG and @through the scaling of thecm(t)’s# D f are
both determined only from the tip of the front. This is
perfect agreement with Brunet and Derrida’s simplifi
model @8#.

~v! Finally, the scalings ofD f andDG have been obtained
by means of an ansatz@second paragraph below Eq.~13!#.
The integrity of the method used here to obtain these s
ings can be tested by numerically obtaining the scaling
DG and the scaling properties of̂cm(t)cm8(t)& t for the
FKPP equation. It must also be noted that these numer
simulations involve extremely high values ofN, and are no-
toriously difficult to perform.
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